
TinyUnit: The Simplest Unit Test Framework that
Can Possibly Work

Download:

Why TinyUnit?

After downloading the latest version of JUnit and Nunit, I was unpleasantly surprised. It had
downloaded a huge collection of classes and I did not understand any of it! And I was unit
testing for more than two years, so something was definitely wrong. What I expected to be
something simple, consisted of more classes then I could possibly imagine for such a simple
task. I couldn't even begin trying to understand what all the classes were about. Not even
after reading the documentation. What I did understand, was that I would never have a unit
test framework set up like that. It appeared to rely heavily on reflection and used singletons
(the global variables of object-oriented languages). I had already made my own unit test
framework because the existing VBunit frameworks all refused to install properly, so I decided
that it was time to make my code public. I can't believe that I am the only one having trouble
with existing unit test frameworks.
I kept the JUnit terms, but started from scratch, because I was convinced that unit test
frameworks did not need the complexity of the existing ones. It is back to basic, back to
simplicity, back to understanding. It's what I need as an extreme programmer: the simplest
thing that could possibly work.

What's the difference between TinyUnit and the regular unit
testing frameworks?

Well, first of all, TinyUnit does not use reflection or singletons. This means that your tests
aren't "optimised out" of your project before you can even run them, and, more important,
that you have control over the order in which the tests are executed. So you can test the
independent classes before the classes that depend on them. The advantage, off course, is
that a failing independent class will always be the first to fail and therefore be recognisable.
The classes that depend on the failing class will likely also fail, so the number of failed tests
may be quite large, making it otherwise really difficult to find the real failure.
And, of course, TinyUnit is simple. There is a TestDriver and there are tests. There's nothing
more to it. The TestSuite is a group of tests and therefore a test itself.

For what language is TinyUnit written?

TinyUnit was originally written for Visual Basic 6.0 and recently a version was added for
Visual Basic .NET. A version for other object-oriented languages that do not support the
Microsoft-style events is easily made, as is shown in the PHP5 package. Java programmers
will not have much trouble reading PHP5 source code.

Class overview

TinyUnit consists of only three elements: a testdriver that starts the tests and gathers the
results, a testclass, and a testsuite, which is nothing more than a kind of collection. The
testclass is not a concrete class: you derive your own testclasses from it.

General For VB6 For VB .NET For PHP5

General
Documentation: This
page

Framework
(source and DLL)

Framework
(source and DLL)

Framework
(source=executable)

UML schemes
(Poseidon format):

VB6 Scheme VB .NET Scheme PHP5 scheme

Pag. 1

Visual Basic 6

In Visual Basic 6, the testclass can only be an interface (Visual Basic 6 and earlier have no
implementation inheritance that you can define yourself), so the UML scheme looks as
follows:

Where any method starting with "get_" is a property get routine.

Visual Basic .NET

Visual Basic .NET has a better object model that supports abstract classes and "protected"
scope. The testclass no longer needs the TestDriver reference to be passed via the interface,
and your testclass only needs to override a "Run" method without parameters. The Setup and
Teardown methods can also be overridden, but you don't have to if you don't need to. For
Visual Basic .NET, the scheme is:

PHP5

In PHP5, Microsoft-style events are not available and java-style events must be used. This
adds one listener interface to the model. Your unit tests will probably be run from some sort
of logger class that instantiates the TestDriver and the TestSuite. It is called TestLogger in this
model. The vivibility is shown as the first character in a property or method: "+" denotes a

Pag. 2

public method, "-" a private property, "#" means protected and "~" denotes friend. Note that
PHP5 does not support friend visibility, so these methods are implemented as public as well.
They are shown in the diagram as friend methods to express their meaning.

Some explanation of the framework

The clsTestDriver class

This is the root of the system. It causes the tests to run and gathers all the test results. It also
outputs the results to the outside world. The outside world may be a windows form, a web
page, the debug console window or just a plain dumb text file. Or any combination of them.
That is up to you.

The ifcTestable interface

This is how a test looks from the outside, if you are programming in Visual Basic 6. Visual
Basic 6 can only use an interface. Just implement the interface you have a test. You are
supposed to store the reference to the TestDriver passed through the Setup method and report
back via this object. Also in the Setup method, you can create any other materials you need
for your test: a database, a file, objects to be passed as parameters, etc. In the Teardown
method, release the reference to avoid circular references that cannot be cleared by Visual
Basic, and clean up the test material.

The clsAbstractTest class

This is how a test looks from the outside, if you are programming in Visual Basic .NET. Just
inherit the abstract class and you have a test. You are supposed to report back to the

TestDriver, which is available trough the Driver method. Override the Setup method if you
want to set up some test material (files, databases, other objects, etc). The Teardown method
can be overridden to clean everything up.

The clsTestSuite class

This is nothing more than a collection of test classes. As you will most probably have more
than one class to test, you can group all your tests in one or more TestSuites.

The test implementations

Pag. 3

These are the test classes you write yourself. The tests are, like your code, grouped by classes
and methods. This is something to facilitate the location of possible failures; it is not an
obligation. However, it is good practice to test each non-private method of a class, because all
the non-private methods make up the "contract" of the class. Within the method tests, the
actual tests are performed. You are supposed to use the following methods of the clsTestDriver
class (that was passed to you through the Setup method or is available through the Driver
method):

� StartClass does not raise an event, but simply sets the class name.
� StartMethod raises an "OnStartMethodTest" event with a message containing the class
and the method being tested.

� Should and Shouldnt raise "OnLogIntermediate" events that contain the results of the
actual testing and a description.

� EndMethod raises an "OnEndMethodTest" event and returns the state (true=passed,
false=failed) of the method test.

The cookbook

Here are the simple steps toward your first test project with TinyUnit.

Define your test classes

VB6 users define test classes that implement the ifcTestable interface, VB .NET users define
classes that inherit from the clsAbstractTest class.

Group them into one or more TestSuites

Define a variable as clsTestSuite and store newly created test objects in it.

Create an instance of the TestDriver

Define a "WithEvents" variable to store an instance of the clsTestDriver class in. Pass your

TestSuite to the TestDriver in the constructor.

Process the results

Catch the events generated by the TestDriver it and display them or log them.

Pag. 4

